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Large (gigajoule) amounts of energy can in principle be stored as kinetic energy in 
liquid metal circulating round a torus and can be extracted at the gigawatt level by 
Alfvbn waves propagating along an imposed axial field. A major limitation on the 
energy that may be so stored is the disruption of these primary Alfvkn waves by 
secondary flows in meridional planes, associated with out-of-balance centrifugal 
forces ahead of and behind the waves and non-uniform magnetic pressures at the 
wave fronts. Vorticity, created at  the wave, itself propagates in secondary Alfvh 
waves. 

This paper gives a linearized treatment of these secondary motions and the associated 
perturbations of the imposed axial field and compares the resulting disruption of the 
primary wave mode with crude estimates made in an earlier paper. The main case 
treated is the discharge of the stored energy into a matched resistor by an Alfvkn step 
wave but the secondary consequences of standing primary waves are also explored. 
The nature of the solutions depends on the electromagnetic characteristics of the walls 
normal to the imposed field. The problem is mathematically interesting because it 
involves the joint solving of elliptic and hyperbolic equations that are coupled by the 
boundary conditions at  these walls. 

1. Introduction 
In a recent, speculative proposal (Shercliff 1976) for large (gigajoule) energy-storage 

devices with liquid-metal rotors, exchanging energy via Alfvbn waves, it was recognized 
that a major limitation on the amount of energy that could be stored was the distortion 
of the basic wave mode by secondary flow. It is the purpose here to give this problem 
a fuller treatment that is more accurate and revealing than the crude estimates given 
in the paper just cited. Being a linearized treatment, however, it  applies only to small 
wave amplitudes whereas any useful energy store would probably involve large 
amplitudes, for which an analysis of the secondary effects would present a very 
difficult problem indeed. The secondary effects might themselves be capable of 
exploitation so as to allow enhanced exchange of kinetic and magnetic energy. 

Figure 1 shows the Alfvh energy store at its simplest. The torus formed by rotating 
the rectangle W X Y Z  about the z axis is filled with liquid sodium, which is the best 
liquid conductor. The inner and outer cylinders, of radius rl and r2 respectively, are 
conducting electrodes and will be taken to be much better conductors than the 
sodium. The plane top and bottom walls are insulated. A uniform vertical magnetic 
field B, is provided by an external magnet, with flux return through a suitable yoke 
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FIUURE 1. AlfvtSn energy store during discharge. 

(not shown). In  most of this paper we shall treat the fluid as virtually inviscid and 
perfectly conducting, which is a reasonable first approximation for the very large 
systems under consideration, as the earlier paper showed. It is moreover still reasonable 
to treat conducting walls as perfectly conducting in comparison with the sodium 
provided their resistance is small enough in comparison with that of the relevant 
skin depths or boundary layers in the sodium. 

Energy exchange is achieved via an external circuit connected between the cylin- 
drical electrodes. The figure shows an external circuit PQ schematically. In  practice 
it obviously has to be arranged axisymmetrically, a t  least in the vicinity of the 
sodium. One mode of operation is first to apply a slowly rising p.d. across PQ producing 
radial current flow in the sodium and so causing the liquid rotor to accelerate to a 
speed that is independent of z but proportional to  l / r ,  r being distance from the axis. 
This occurs because the azimuthal j x B forces are also proportional to l/r, as I j I cc l/r 
in this geometry. ‘Slowly rising’ here means: rising over a time much longer than the 
transit time of vertical Alfv6n waves in the torus. The current paths are completed 
by vertical currents in the cylindrical walls. 

The stored kinetic energy can then be rapidly extracted at a steady rate by suddenly 
connecting a resistive load across PQ. The discharge current J initially crosses the 
liquid as a radial current sheet at  the bottom plane z = 0, but this sheet promptly 
propagates upwards as an Alfv6n step wave, which reflects at the non-conducting 
top surface. The wave is a sheet of radial current and vorticity. Since the fluid velocity 
still varies like I/r  at each level, there is no z-wise vorticity. If the load is correctly 
chosen (i.e. using the matched impedance) each transit of the wave reduces the 
velocity by one-half of its initial value, leaving behind no kinetic or magnetic energy 
(other than that of the vertical magnetic field) after two transits. After the first transit, 
one-quarter of the original kinetic energy has been turned into the energy of the 
azimuthal magnetic field which the initial Alfv6n current sheet sets up in its wake. 
As this is the ideal mode of operation we shall concentrate on this case. 

So far we have ignored the fact that the flow is occurring in a curved channel, with 
vorticity (in the wave sheet) oriented in the direction of curvature, and is therefore 
prone to secondary flow. Figure 2 records an intuitive appraisal of the situation that 
occurs when moving fluid containing no azimuthal field is being retarded by the 
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FIGURE 2 .  Cross-sect.ion of left-hand limb of torus. 

initial Alf\+n step wave. Only the left-hand limb of the torus is shown. The primary 
velocity v, and wave field B, are in the + 8  direction, i.e. out of the page, and are 
proportional to l f r .  Secondary vorticity would be produced a t  the wave by the vertical 
gradient in the radial centrifugal forces and by the radial gradient in the vertical 
j x B forces in the wave, due to  the azimuthal field B, created by the wave. The closed 
loop roughly indicates the resulting secondary motion, which would convect the 
imposed field B, out of shape. The motion and the perturbation of the field would 
both upset the uniform advance of the primary Alfv6n wave. One would expect the 
azimuthal secondary vorticity produced a t  the wave itself to propagate vertically in 
both directions as a secondary system of Alfv6n waves, travelling at  the same speed 
as the main wave, and therefore not running ahead of it. Nevertheless, irrotational 
secondary fluid motion will occur ahead of this wave because that would be caused 
by pressure disturbances which propagate instantaneously, under the usual assump- 
tion of incompressibility. This is one of the features that makes this problem parti- 
cularly interesting; Alfv6n wave phenomena are described by mixed ellipticfhyperbolic 
equations. 

One other introductory point is that the secondary flow need not always occur, 
despite the curvature of the channel. This is because sometimes the magnetic forces 
or equivalent Maxwell stresses can just balance the centrifugal effects. Consider the 
advancing wave front referred to axes that are travelling with i t  z-wards at the Alfvkn 
velocity b ( = B,,f(,up)+, p being the fluid density and ,u being 4n x lo-' in S.I. units). 
The motion now obeys the equations of perfect steady MHD: 

p( v . grad) v + gradp* = (B . grad) B/,u (1 )  

and c u r l v x B  = 0, (2) 

in which v and B are the velocity and magnetic field andp* is the sum of the pressure 
p and the magnetic pressure B2/2,u. Separating out the term B2/2,u is mathematically 
convenient but physically very misleading because i t  makes the magnetic forces 
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appear to act a t  the wrong place and in the wrong direction. The right-hand side of 
(1) can be described as being due to that part of the Maxwell stress which is left after 
the magnetic pressure has been removed, namely a tension B2/p along the field lines. 
The curvature of the azimuthal field lines produces a ‘centripetal force’ to be set 
alongside the normal centrifugal esects. As WalBn (1944, 1946) pointed out, (1) and 
(2) can be satisfied exactly by taking one of the cases 

v = s-B/(pp)A (3) 
together with p* = constant, and then the Maxwell tensions can just balance the 
centrifugal forces and no secondary flow need occur. To get flow-s relevant to the 
present discussion we take B, as Bo and v, as - b, take v, and B, to be related by (3), 
and take v, and B, to be zero. If we refer this motion instead to the original axes, 
relative to  which the fluid has no z-wise velocity, so that the wave is advancing a t  a 
speed b ,  then the azimuthal field and velocity must still be proportional, and in 
particular must vanish together. Such a case occurs if the initial state in figure 2 
consists instead of fluid at rest without azimuthal field and a n  Alfvkn wave producing 
azimuthal flow and field is generated by suddenly applying a voltage and current 
source across PQ. No secondary flow occurs here during the first transit, even for 
large amplitude waves. 

In  general, however, the azimuthal velocity and field are not proportional to  each 
other in accordance with (3) ,  and secondary flow does occur. In particular, secondary 
flow must occur whenever there are waves travelling in both directions owing to 
reflexion, etc., for then obviously a W a l h  flow could not be produced by a change 
to moving axes. 

2. A linearized treatment of the secondary effects 
We shall assume that the secondary flows and their associated field perturbations 

are so weak that (a )  the primary wave is not significantly affected by them and ( b )  
a linearized treatment of the secondary motion is acceptable, i.e. the distance that 
the secondary motion convects its own vorticity is negligible in the times of interest 
(typically one or two wave transits). The primary motion is characterized by purely 
azimuthal velocities v, and fields B,, each proportional to l l r  a t  each instant and value 
of z. That B,K i/r is evident from AmpBre’s law applied to a horizontal circle of 
radius r centred on the axis, the only vertical currents being in the cylindrical walls. 

The secondary phenomenon involves azimuthal vorticity wo associated with velo- 
cities v, and v, in meridional planes, inducing azimuthal currents j, which produce 
magnetic perturbations B, and B,, superposed on the primary field B, in the z direction. 

The equations of unsteady perfect MHD are 

pav/at+p(v.grad) v+gradp* = (B.grad)B/p (4) 

and aB/at = curl v x B. (5) 
Expressed in cylindrical polar co-ordinates with axisymmetry and with quadratic 
tcrnis in v,, v,, B, and B, suppressed, these equations have the following components. 

(i) dzimuthal: 

(i.e. t’he expected Alfvbn wave equations governing the primary flow). 
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(ii) AxiaZ : 

(iii) Radial : 

(8% b )  
av, pvi ap* B,BB,. B; aB, - -+-= ---- -- aV,. 

P a t -  r ar p az p - 9  at o a z  

Equations ( 7 b )  and ( 8 b )  express the convection of the field by the secondary motion. 
As usual, we make progress best in terms of vorticity, having eliminated the unknown 
pressure. Noting that 

av, av, . aB,. aB, 
,Uje = --- az ar ' az ar ' 

0, = --- 

we deduce wave equations augmented by a source term aP/az, namely 

,U aj,/at = B, aoe/az 

and 

in which P = (vi - B:/,up)/rwh. For simplicity we shall henceforth assume that the 
radius ratio rl /rZ of the torus is near enough to unity for the variation of r in P to be 
ignored, the mean value r, being inserted. One would expect the new vorticity created 
by the primary waves to split somehow between two trains of secondary waves, 
travelling in opposite directions. The resulting secondary flow and magnetic field 
disturbances may be related to w, andj, by using stream functions $ (for flow) and 
# (for perturbation field) such that, at each instant, 

V2$ = - q,, V2# = -pie. (11 ) ,  (12) 

Here we take V2 = a2/ar2 + a2/az2, the fractional variation of r being assumed small. 
The wave equations (9) and (10) and the Poisson equations (11) and (12 )  have to 

be solved in parallel, being linked by the boundary conditions on # and $ at the edge 
of the cross-section of the torus, which we take to be a square of side 2a, merely for 
simplicity. I 

One condition is that $ = constant = 0,  say, for the edge is a streamline. The other 
conditions depend on the electromagnetic nature of the environment of the sodium. 
The cylindrical walls (r  = rl, r2) have already been taken to be perfectly conducting 
in the z direction and so it is reasonable (though by no means inevitable) to take them 
as perfectly conducting in the 0 direction also. Spontaneous azimuthal currents in 
them then prevent the z-wise flux linked by either wall from changing and so # = 0 is 
an appropriate condition for the perturbation field at  each wall. 

As regards the walls at  z = 0 and 2a, if they are essentially the faces of a highly 
permeable magnet yoke, not subject to skin effects and each at  constant magnetic 
potential, the boundary condition is B, = 0, i.e. a#/az = 0. Then (8) indicates that 
av,/az = 0, i.e. a2$/az2 = 0. Since $ also vanishes at z = 0 and 2a, Vzll- and we vanish 
there too. A consequence is that we may integrate (9) over the cross-section and 
deduce that 

vanishes, i.e. the total azimuthal current starts off, and therefore stays, zero. 
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However, the need for a container to protect the sodium might make the assump- 
tion of conducting walls at, z = 0 and 2a a more realistic alternative. Then, to avoid 
short-circuiting the system, these walls would have to be insulated from the sodium 
and the cylindrical electrodes. Whatever conductors were being used during discharge 
to connect the sodium to the external loads (see Shercliff 1976) would also constitute 
conducting sheets at  z = 0 and 2a, although if they had radial slits in them or were 
a multi-turn ‘secondary’ winding they would not be capable of carrying azimuthal 
currents which could control the secondary fields B, and B,. The simplest assumption 
if there are conductors at the top and bottom is to take them as virtually perfect 
conductors in the azimuthal direction. Then z-wise flux at any radius cannot change 
and the boundary condition on the magnetic field perturbation becomes $ = 0 on 
these walls also. The azimuthal electric field then also vanishes, by Faraday s law 
applied round the torus, and as a consequence v, must vanish since E + v x B = 0 in 
the perfectly conducting fluid. The fluid is ‘frozen’ to the wall. Note that this is an 
inductive effect and, in this axisymmetric geometry, does not depend on direct 
electrical contact between the fluid and the wall, which must have an insulated surface, 
as has already been remarked. The condition v, = 0 implies that a$/az = 0 at z = 0 
and 2a. 

We shall refer to the cases treated in the previous two paragraphs respectively 
as ‘the rnagnetic-walls case’ and ‘the conducting-walls case’. 

We shall refer our solutions to x ,  z axes, where x = rm - r .  The walls are x = a 
and z = 0,2a.  

3. Discharge into a matched resistive load 
We shall treat in detail this case, in which the liquid, devoid of azimuthal field and 

initially moving azimuthally at  a uniform velocity U (if we ignore variations with 
radius r ) ,  is brought halfway to rest by a plane primary AlfvBn step wave that rises 
from the bottom plane z = 0,  as indicated in figure 2 .  Behind this wave there is an 
azimuthal field &U(pp)h. In  this case, P in (10) is a step wave, travelling with the 
primary wave, in which P falls from C2/rm ahead of the wave to zero behind it. We 
shall make use of the wave co-ordinates: 

= z-bt, w = z + b t - 2 ~ .  (13) 

Whenever the P distribution is any upward-travelling wave, we can put P = P(v)  
and then (9) and (10) have the general solution 

and - 

in which g and h are as yet unknown complementary functions. dPldv is the ra.te of 
creation of vorticity and (14) shows that just half of the vorticity created propagates 
forwards with the point of its origin, accumulating there in time t to a level +tdP/dv, 
while the rest propagates backwards, hitting the lower wall. When P is a step wave, 
dPldv is a delta function, i.e. the sheet of radial current and vorticity corresponding 
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to the primary Alfv6n wave is also a sheet of azimuthal current and vorticity, whose 
strength grows linearly in time. 

It is convenient at  this point to non-dimensionalize the equations by setting 

(16) I X = x/a, Z = z/a, T = btla, V = v/a, W = wla, 
Y = r,b$/a2U2, @ = r,b#/a2U2(,up)4. 

We also introduce for convenience a dimensionless function G ,  which includes the P 
and g terms in (14) (both functions of v), namely 

G( 8, X )  = (bg - tP) r,/U2 + a, 
H (  W ,  X )  = bhr,/U2 - $. 

and replace h by H ,  where 

Then -V2Y = +Th'(V)+G+H (19) 

(20) and 

in which V2 is now dimensionless, 6 ( V )  is a unit delta function at  V = 0 and X(V)  
is a unit step function such that S = 0 for V > 0 but S = 1 for V < 0. The Poisson 
equations (19) and (20) cannot be solved directly because G and H are unknown. They 
are determinable, however, because Y has to satisfy two boundary conditions (Y = 0 
and aY/aZ = 0 or a2Y/aZ2 = 0) at Z = 0 or 2, i.e. more than the norm for a Poisson 
equation. The extra conditions in effect generate fresh waves by electromagnetic 
induction and these propagate into the liquid from the top and the bottom, providing 
the necessary distributions of G and H .  These distributions are a function of the 
previous history, because of the delays associated with the wave motion. The problem 
is seen to be a particularly interesting mixed elliptic/hyperbolic one. Y has to be 
found first and subsequently @ is easily deduced, G and H then being known. 

As there is no secondary motion or perturbation field at  T = 0, G + H ,  - G + H and 
so also G and H all vanish for the relevant ranges of V and W ,  namely 0 < V < 2 
and - 2 Q W < 0, within the fluid. 

It turns out that the magnetic-walls case is much the easier to solve and we shall 
therefore take it first. We shall initially consider only the first transit of the waves, 
i.e. 0 < T 6 2. 

- V2@ = - $T6( V )  + $X( V )  - G +  H ,  

4. The magnetic-walls case 
The controlling boundary conditions are Y = 0 at Z = 0, 2 or at X = _+ 1, and also 

V2'Y = 0 at Z = 0, 2. The latter condition, together with (19), implies for 0 < T < 2 
that (a)  at Z = 0, where - 2  6 W Q 0 (and so H = 0) and - 2  6 V < 0, G = 0 for 
- 2 6 V < 0 also, while ( b )  at Z = 2, where 0 < V < 2 (and so G = 0) and 0 < W < 2, 
H = 0 for 0 < W < 2 also. Physically, (a)  implies that the requirement that the 
magnetic field should stay normal to the poleface has the effect that reflected waves 
are continually generated which, in this case, result in the suppression of all the 
vorticity shed behind the primary wave, while (b)  implies not only that there is no 
vorticity ahead of the primary wave but also t,hat the top boundary does not emit 
waves of vorticity either, a result which seems totally unsurprising until one has met 
the conducting-walls case, which follows later. 



186 J .  A .  Shercliff 

@ =  

T I  

( - l )%- l  cos N X  cosh N ( 2  - 2) sinh NT 
sinh 2N 

+x- N3 
' 

( - I)%-' cos N X  cash N ( 2  - T )  cash N Z  -TX- 
N2 sinh 2N 

2.0 

I .o 

2.0 

1 .o 

0 1.0 0 1.0 0 1 .o 
X X X 

(a )  (b )  (4 
FIGURES 3 (a-c). For legend see facing page. 

As a result (19)  becomes merely 
- V'Y = $T6( V )  

- V2@ = - STS( V )  + QS( V ) .  
while (20)  becomes 

Solutions may be found as Fourier series with respect to either X or 2. The choice of 
X is more convenient for computing purposes and will be preferred. (This choice is 
essential in the conducting-walls case.) Subject to the conditions Y = @ = 0 at 
X = k 1 andY = a@/aZ = 0 a t  Z = 0, 2, the solutions are 

( - l)%-l cos N X  sinh N ( 2  - 2) sinh N T  
if V a O ,  Z a T ,  

sinh 2N 

" N2 sinh 2N 

Y = (  " N2 

( - l)*-l cos N X  sinh N ( 2  - T )  sinh N Z  
if V <  0, Z < T, 

in which N = 4(2n - 1 )  7~ and n takes all positive integral values, and 

( -  1 p - 1  sinh N ( 2  - T )  cosh N Z  
cosNX ( 1 -  1" N3 sinh 2N 

I v20, Z > T ,  

I if V <  0, Z < T. 
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FIGURE 3. Magnetic-walls case. (a)-(c)  Streamlines and (d)-(g) perturbation field lines 
hand half of left-hand limb of torus. The numerical values refer to Y and iD. (a), (d) 
(b) ,  (e) T = 1.0. (c) ,  (f) T = 1.5. (9) T = 2.0. 

in right- 
T = 0.5. 

In  this case the motion consists of two irrotational regions separated by a vortex 
sheet. By Stokes’ theorem the closed-loop streamlines must all intersect the sheet. 
The ends of the vortex sheet at  X = 1 are singular because the necessary jump in 
horizontal velocitjr v, across the sheet is inconsistent with the boundary condition 
v,. = 0 and consequently v,+m there. This singularity is an artificial consequence of 
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FIGURE 4. Perturbation of imposed field B, by secondary field when T = 0.5 and 
B, = aUz(,up) tllbr,. -, magnetic-walls case; ---, conducting-walls case. 

assuming zero dissipation, and would be eliminated if one allowed for small but finite 
resistivity. This would lead to a wave layer of h i t e  thickness and also finite boundary 
layers on the walls at X = & 1 if the side walls were made finitely conducting. Even 
then the linearizing assumptions that the secondary flow did not significantly affect 
the primary wave or convect its own vorticity far would fail first in these vicinities, 
where the velocities would still reach their greatest values. Exactly parallel considera- 
tions apply to the magnetic side of the problem. In this approximation the total 
vertical field falls past zero and reverses at  one end of the wave. 

Representative streamline and perturbation field line patterns are presented for 
T = 0.5, 1.0, 1-5 and 2.0 in figure 3. There is no flow at T = 2.0 (and hence no stream- 
line picture) but azimuthal currents and perturbations of the field still persist in this 
case (figure 39).  The vortex sheet is growing in strength and so the secondary flow 
accelerates until the influence of the vortex sheet is inhibited (and finally extinguished 
at T = 2 )  by the top wall. The maximum value of Y is about 0.215, occurring aL 
X = 0, Z = T (i.e. the centre of the wave) when T is approximately 1.45. This indicates 
that the average secondary vertical velocity reaches a maximum value of about 
0.215aU2/br,. (This should be compared with the crude estimate of aU2/?rbrm given 
in the earlier paper, Shercliff 1976.) The average horizontal velocity above the wave 
at T = 1.45 is about twice as large. 

In  figure 3 (9)  the fact that the perturbation field is not normal to the wall at 2 = 2 
is attributable to the current sheet which is just reaching this wall. 
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FIGURE 5. Perturbation of primary wave velocity. (a) Magnetic-walls case. 

(b )  Conducting-walls case. The scale changes for negative values. 

It is interesting to compare the convected field shape with expectation. At the risk 
of overstepping the range where linearization is wholly valid so as to make the effects 
clearly visible, figure 4 shows typical total field lines that result from combining the 
perturbation field at  T = 0.5 with an original uniform vertical field chosen to be of 
st'rength ;la U2(pp)J/br,. The label 'MAG' indicates for the magnetic-walls case the 
line @ = 0, on which the original field lines have moved neither left nor right. As 
expected from a consideration of the flow patterns, the field lines below this line have 
moved to the right while the weaker flows above the wave have moved the field lines 
to the left, but to a much smaller extent. There is no contradiction in the region 
between the wave and the line (D = 0 because here there is fluid which earlier had 
spent more time above than below the wave and therefore leftward displacement is 
possible. The field stays normal to the top and bottom walls. 

The convection of the field has the effect of strengthening the vertical field at the 
wave on the left and weakening it on the right, with corresponding effects on the 
Alfvbn speed. It will be noticed that this effect and the direct convection of the 
primary Alfvbn wave by the vertical velocities are to some extent mutually com- 
pensating. For instance, on the right the wave rises more slowly relative to fluid 
which is itself rising. The resulting increase in the absolute upward vertical velocity 
of the primary Alfvbn wave is 
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evaluated at  Z = T ,  which is given by the equation 

Ab = aU2/br,  X( - l)n-lQ sin N X ,  

Q = [(coshN(2-T)sinhNT)/N-Tcosh2N(T - l)]/Nsinh2N. 

Convergence is much slower at T = 2 and Ab then tends to infinity as X --f 1. Appendix 
B gives a convenient approximation for this case. The average (0 < X < 1) value 
Abnk takes the following values: 

in which 

T = 0.2 0.4 0.6 0.8 1.0 
Ab,(aUa/br,)-l = 0.0148 0.0423 0.0671 0.0837 0.0899 

T = 1.2 1.4 1.6 1.8 2.0 
Abm(aU2/brm)-1 = 0.0818 0.0499 -0.0267 -0.1885 -0.4955 

From this we may infer that the perturbation of the primary Alfv6n wave is not 
serious until T approaches 2 if 0.09aU2/br, < b,  i.e. secondary effects are negligible 
if ar&1(U/b)2 < 11 ,  say. This should be compared with the criterion ur&l( U/b)2  < 7r 
which was arrived at by crude arguments in the earlier work (Shercliff 1976). This 
is now seen to be unduly pessimistic, the reason being that the compensatory effect 
of the field distortion was ignored in that paper. The perturbation gets much worse 
as T 3 2, however, when Y --f 0 but Q, does not. For this reason the conducting-walls 
conditions give much better performance. 

It is particularly noteworthy that the partial compensation between the terms 
8Y/aX and aQ,/aX includes a cancelling of the terms which increase without limit as 
X -+ 1, so that the increase in wave velocity stays finite there. This gives increased 
confidence in the validity of results given here. Figure 5 (a)  shows how Ab(uU2/brm)-1 
varies with T and X ,  reaching a maximum around T = 1.0 and later increasing 
negatively as T -+ 2. Note the change of scale for negative values. 

5. The conducting-walls case 
Again we consider the first transit of the wave (0  < T 6 2) at this stage. The 

controlling boundary conditions are Y = 0 at Z = 0,  2 or at  X = rf: 1 and also 
aY/aZ = 0 at Z = 0 ,2 .  V2Y consists of three terms: 

- V2Y = +TS( V )  +G( V ,  X) + H (  W ,  X). 127) 

We proceed by seeking a solution consisting of four terms, namely 

Y = U ' ( X ,  Z, T )  + Q'( V ,  X) +R'( W ,  X )  + A'(X,  Z, T ) ,  (28) 

with the following characteristics. 
(a)  U' ,  Q', R' and A' all vanish at X = f 1 and at  T = 0 (0 < Z < 2 ) .  
( 6 )  U' vanishes also at Z = 0 , 2  and is determined by the equation - V2U' = +TS( V) .  
( c )  Q' and R' are zero for V > 0 and W < 0 respectively, to satisfy the requirement 

that G (which equals - V2Q') and H (which equals - V2R') vanish ahead of the waves 
emanating from the bottom and top walls. 
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( d )  A' is a harmonic function which does not contribute to V2Y and serves to enable 

(e) The four functions can be expressed as Fourier series in X of the forms 
?F to vanish at Z = 0, 2. 

( -  1p-1 

( -  1)n-1 

( -  1p-1 

( -  1p-1 

U ( Z ,  T )  COB N X ,  

&( V )  cos N X ,  

&'=I:- R( W )  cos N X ,  

A' = x 

4N3 
U' = I: 

4N3 
Q' = Z 

4N3 

A ( Z ,  T )  cos N X .  4N3 

(29)  

Again N = $(2n - 1 )  T,  n takes all positive integral values and the factor ( - 1)n-1/4N3 
is chosen for convenience. Characteristics (b )  above lead to the results 

sinh N (  2 - 2) sinh N T  
sinh 2N 

u = [  sinh N(2 - T )  sinh N Z  

if 
~ o, 4NT 

if V < 0. sinh 2N 
4NT 

Characteristics (d) determine A in terms of Q and R, as follows: 

9 (31) 
&( - T )  sinh N(2 - Z )  + R(T) sinh N Z  

sinh 2N 
A = -  

for U vanishes a t  Z = 0,2, R vanishes at Z = 0, Q vanishes at  Z = 2, V = - T at 
Z = Oand W = T a t 2  = 2. 

All conditions have now been satisfied except the crucial, wave-generating conditions 
on aY/aZ at Z = 0,2.  

If we let P ( T )  = &( - T), then at Z = 0 

aQ dQ d P  V = - T ,  -= -=- -  
8 2  dV dT' 

while at  Z = 2 
aR d R  dR(T) W = T  -= -=-  

' aZ dW dT * 

Hence, €or each set of Fourier components, the two W / a Z  conditions become the 
coupled, first-order, differential equations 

sinh N(2 - T) dP N (  - P cosh 2N + R) - 
(at = o) --_ - 

4N2T sinh2N dT sinh 2N 

sinh N T  d R  N (  - P + R cosh 2N) 
+-- sinh2N sinh 2N d T  = 0 (at Z = 2). and -4N2T- 
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meet the requirement that P (or Q) and R vanish at  T = 0, we deduce that 
Choosing the appropriate constants in the resulting complementary functions to 

P ( T )  = Q( - T )  = 4NT sinh N T  - 2 cosh N T  - 2(sinh2 N )  enp ( N T  coth N )  

+ 2(cosh2 N )  exp ( N T  tanh N )  
and 

R ( T )  = - 2 cosh N ( T  + 2) + 2(sinh2 N )  exp ( N T  coth N )  + 2(cosh2 N )  exp ( N T  tanh N ) ;  

and A is now determined. Moreover, substituting - V for T in the first equation and 
W for T in the second yields the desired expressions for Q( V )  and R( W ) ,  provided 
V < 0 or W > 0,  respectively. (Q and R vanish for V 2 0 or W < 0 respectively, it 
will be remembered.) 

The solution for Y for 0 < T < 2 has now been completely found but for brevity 
we shall not present it complete at this point. At first sight it appears to be an extra- 
vagantly divergent series because of terms containing sinh N T  or exp ( N T  coth N ) ,  
etc. In  fact all these quantities, which increase very rapidly without limit as N 
increases, largely cancel each other, leaving only terms which diminish with increasing 
N .  Convergence is actually quite rapid, being slowest in the case Z = T ( V  = 0 ) ,  
where the series goes like 1/N2. For computing purposes i t  is absolutely essential to 
replace the exact solution by an asymptotic form valid at  high N ,  and this is given in 
appendix A. In  practice the exact form is acceptable only for theJirst terms ( N  = in), 
and even for N = &r as well as for all higher terms the asymptotic form is much more 
accurate ! 

Once Y has been found, @ may be deduced. Inspection of (19) and (20) reveals 
that @ may be written down by taking 

CD = - U ’ - Q ’ + R ’ + C ’ + B ’ ,  (33) 

in which the change of sign of U‘ and Q’ as compared with Y accommodates the 
change of sign of the 6 and G terms in (20), as compared with (19). Here C’ is a solution 
of the equation - V2@ = is( V ) ,  vanishing at X = f 1 and 2 = 0,2, and B‘ is a new 
harmonic function enabling CD to vanish at  2 = 0,2 in the face of non-zero values of 
Q’ and R’ there. 

Now we let 
( -  1)- 

(cos N X )  C(Z ,  T ) ,  
4N3 

C‘ = c 
and find that 

4(coshNT- l)sinh(2-2) 
sinh 2N 

4 ( 1 -  sinh 2N 

if V 2 0, ] ( 3 4 )  
cosh N ( 2  - T )  sinh NZ + sinh N ( 2  - 2) 

c = [  

Letting 
( -  1p-1  

B ’ = Z -  (cos N X )  B(2, T )  

&( - T )  sinh N (  2 - 2) - R( T )  sinh NZ 
sinh 2N 

4N3 
leads to 

B =  (35) 
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FIGURES 6 (ad). For legend see page 194. 
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X 

(9) 

FIGURE 6. Conducting-walls case. (a)-(d) Streamlines and (e)-(h) perturbation field lines in 
right-ha.nd half of left-hand limb of torus. The numerical values refer to Y and @. (a) ,  (e )  T = 0.5. 
( b ) ,  (f) T = 1.0. ( c ) ,  (9) T = 1.5. (d), (h) T = 2.0. 
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For 0, as for Y, an asymptotic form must be used except when N = in, and appendix 
A lists the appropriate formulae for computing. 

As with the magnetic-walls case, the solutions in this approximation are singular 
at the ends ( X  = 5 1) of the primary wave (2 = T), and the secondary velocity and 
field perturbation increase without limit there. 

Representative streamline and perturbation field line patterns are presented for 
T = 0.5, 1.0, 1-5 and 2.0 in figure 6 .  In  contrast to the magnetic-walls case, flow 
persists at T = 2.0 because of the fresh vorticity propagated into the interior from the 
top and bottom walls. The maximum positive value of’F is about 0.128, occurring at 
the centre of the wave when T is approximately 1.25, but a larger negative value 
( -  0.229) occurs when T = 2 at X = 0, 2 = 1.45, approximately. Here the braking 
effect of the top conducting wall is instantaneously suspended as the vortex sheet 
reaches it. Otherwise the secondary velocities are generally less than in the magnetic- 
walls case, owing to the braking effect of the conducting walls. The sparsity of the 
streamlines near 2 = 0 , 2  in figures 6 (a)-(c) is evidence of this. Figure 6 (c) ,  showing 
the streamlines when T = 1.5, is considerably more complex than the corresponding 
magnetic-walls case (figure 3 c ) .  Sufficient reversed vorticity has been emitted by the 
lower wall to cause closed eddies of opposite circulation, and only such eddies survive 
as T -+ 2.  A strong flow results. 

It is noteworthy that the onset of the wave of vorticity and current emitted by the 
top wall is very gentle and is not obviously detectable in the figures, except perhaps 
in figure 6(e) ,  at the level 2 = 1.5, the head of this wave. In this figure only some of 
the upper perturbation field lines have been plotted just below the primary wave, 
for clarity. 

The general behaviour of the magnetic field is not greatly different from that in the 
magnetic-walls case, apart from the absence of perturbations a t  Z = 0 and 2. For 
comparison with the magnetic-walls case figure 4 shows how the total magnetic field 
has been convected up to T = 0.5 in the conducting-walls case, where the original 
imposed field is again taU2(,up)~/brm. The label ‘COND ’ indicates the line where Q, = 0 
and the original field lines have moved neither right nor left. The (tethering’ of the 
field lines by the conducting top and bottom walls is now apparent. Once again there 
is a zone of (reverse ’ convection just below the primary wave for the same reasons as 
in the magnetic-walls case. It turns out that it is somewhat smaller at each instant 
in the conducting-walls case. 

As in the magnetic-walls case, the final effect Ab on the upward velocity of the 
primary Alfvkn wave is the outcome of two competing effects, the verticalvelocity 
ofthe fluid and the perturbation of the vertical field, and is given again by (23) with 
appropriate values for CP and Y inserted. (See appendix B.) Now Ab falls to  zero as T 
approaches 2 because any field perturbation there is suppressed by the conducting 
walls. The average value Ab,, takes the following values: 

T = 0.2 0.4 0.6 0.8 1.0 

T = 1.2 1.4 1.6 1-8 2.0 

Ab,(aUa/br,)-l = 0-0080 0.0250 0.0431 0.0565 0.0589 

Ab,(aU2/br,)-1 = 0.0398 -0,0081 -0.0790 -0.1223 0.0 

The onset of negative values is slightly earlier now. Perturbation of the primary Alfv6n 
wave is worst around T = 1.8 and is not serious if 0.12aU21brm < b, i.e. secondary 

7-2 
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effects are negligible if ark1( U/b)2  < 8 ,  say. Again the cruder criterion ark1( U / b )  < n 
(Shercliff 1976) is seen to be too pessimistic, because compensation was neglected. As 
anticipated, the behaviour with conducting walls is much more acceptable because 
Ab stays small even as T approaches 2. 

Partial compensation between the terms aY/aX and a@/aX again includes the 
suppression of any tendency for any terms to become infinite as X -+ 5 1, even when 
T = 2, in this case. Figure 5 ( b )  shows how Ab(aU2/brm)-l varies with T and X ,  again 
reaching a reduced maximum (as compared with figure 5a)  around T = 1.0 and 
becoming negative around T = 1.4. Note the change of scale for negative values. This 
time, however, the wave velocity perturbation falls to zero at  T + 2, and a ‘wave’ of 
rapid decrease propagates across the figure after T has passed 1.6. Fairly severe 
perturbations of the wave persist near X = +_ 1 until very late and this could be a 
source of trouble in practice. It might even be necessary to vary the imposed vertical 
field or the depth of the sodium tank to allow for this, provided the device was always 
going to be run at the same energy levels. 

We must now briefly re-examine the other aspects of the validity of the linearized 
approach. Representative secondary velocity and field perturbations are of order 
aU2/br, and (,up)*aU2/brv,, respectively. It is easily verified that we are entitled to  
neglect the quadratic terms in (4) and (5) if a U 2 / b r ,  is small compared with the wave 
velocity b and if (,up)daU2/brm is small compared with the imposed field B,, which is 
the same condition. Then the contribution of neglected terms such as pv,av,/ar to 
pav,/& is indeed negligible in times of order a/b (the half transit time). By the same 
token the distance through which the vorticity is convected is small compared with a 
in times of this order. Our approach therefore is valid provided only that ark1( U/b)2 
is small. It is probable that in a practical device amplitudes would be pushed to the 
point where this condition was not truly satisfied, even though the slightly less 
stringent conditions mentioned earlier for securing small perturbation of the primary 
wave were being satisfied. 

6. Events during the downward transit of the primary wave 
After T passes the value 2 the primary wave reflects from the top, causing vg and 

Bg both to fa,ll to zero. It is now a Wal6n wave (see the introduction), with P zero 
ahead and behind, and so the primary wave never again generates fresh secondary 
vorticity. The primary wave stops after this second transit (Shercliff 1976). wg and 
j, henceforth obey the simple wave equations 

(a )  Magnetic-waHHs-,case. Figure 3 (9) shows the state of the perturbation field 
at  the end of the upward transit of the primary wave. Meanwhile all secondary 
motion has ceased, for we = 0 throughout the fluid whileje takes the uniform value 
(a2U2/2brm) (p/,u)u)g [the residue of the step term S in (20)] plus a current sheet of strength 
( - a3U2/brm) (p/,u)h (the residue of the 6 term) at  the top wall. Remember that the total 
azimuthal current has to be zero. At T = 2 the top boundary condition (that a@/aZ = 0) 
is not satisfied, instantaneously, and the result is that the current sheet is reflected 
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and travels downwards again, but at  constant strength ( - a3U3/br,) (PIP)&, occupying 
the same location as the descending primary wave but now not coupled to it. Meanwhile 
the uniform part ofj, persists unchanged. With we = 0 it  is a solution of (36) and may 
be superposed. The secondary current sheet is inevitably also a vortex sheet, but of 
opposite circulation to the rising sheet during the first transit, for the wave direction 
is now reversed. The associated motion is similar to that portrayed in figures 3 (a)-(c), 
but is reversed, and has different magnitudes for y.” because the vortex sheet is now 
of constant instead of increasing strength. All motion again ceases when the sheets 
reach the bottom. This is not the end of the matter, however, for now a(D/aZ p 0 
at the bottom and the current sheet travels up again, associated with a secondary 
motion in the original (first transit) direction. This sequence continues until dissipation 
of some kind finally intervenes. 

(b)  Conducfing-walls case. Figures 6 ( d )  and ( h )  show the states of the secondary flow 
and perturbation field at  the end of the first transit. Once again a boundary condition 
is being instantaneously infringed; now we have v, + 0 (i.e. aY/aZ =/= 0) a t  the top 
mall, because the vortex sheet has arrived there. The boundary condition will cause 
this to be reflected and travel downwards without changing sign. In  this case it is the 
associated travelling current sheet which changes sign. Repeated reflexion from 
bottom and top continues until dissipation intervenes. However, the problem is much 
more complicated than in the magnetic-walls case and we shall not pursue it further 
here. The reason is that the waves of vorticity represented by the terms Q‘ and R’ 
in (28) have now reached the far wall and continue to arrive, so that they participate 
in satisfying the condition a’P/aZ = 0 at each wall. The result is that the new parts 
of t’hese waves for T > 2 emitted by the bottom and top walls are determined by the 
old parts still arriving there, along with the contributions to i3’Pla.Z of the solution 
due to  the reflected, but now constant, current/vortex sheet and the new harmonic 
function, which is necessary to allow y.” to vanish a t  the top and bottom. 

This behaviour for T > 2 would obviously have to be fully investigated before 
building an Alfvh energy store with conducting walls could be seriously contemplated. 

7. The case of primary standing waves 
Some interest is attached to the case where the primary Alfvh  waves are standing 

waves rather than progressive waves, e.g. where the Alfvhn energy store is acting as a 
pseudo-capacitor in resonance with an inductive magnetic system. We shall consider 
only the simplest case that. is representative of this class of problems, namely the 
situation where the waves are merely resonating between the top and bottom walls 
at z = 0 and 2a, and virtually no power is being exchanged with an ex%ernal circuit. 
(At the high Lundquist and Hartmann numbers appropriate to the large Alfvbn energy 
stores under discussion, the effect of dissipation is confined almost entirely to thin 
Hartmann layers (Shercliff 1965, p. 156) and can be disregarded elsewhere in the 
primary Alfvkn waves, particularly when highly conducting side walls are provided. 
The same reference discusses various ways in which the dissipated energy could be 
supplied externally, both at and off resonance. Jameson ( 1964) describes experiments 
which exhibit one of the ways in which standing Alfv6n waves can be sustained.) 
The conditions at z = 0 and 2a will be taken to correspond either to the magnetic-walls 
case or to the conducting-walls case. 
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In  the magnetic-walls case, the boundary conditions on the primary waves will 
be Be = 0 at z = 0, 2a, in the absence of any conductors between the sodium and the 
magnet poleface, carrying radial currents. In  this case the primary standing waves 
obey equations of the form 

vg = U cos (nz/2a) sin (nbtl2a) 

and Be = U(pp)isin (nz/2a) cos (nbt/2a), 

if we select the fundamental mode, of lowest natural frequency. A radial ‘stirring 
force ’ F now acts on the fluid in addition to the gradient ofp* and is given by 

(37) 1 

in which the unsteady part is irrotational (and will merely be balanced by pressure 
variations) and the rotational part is steady and will therefore cause a steady secondary 
motion, which we shall examine. 

The conducting-walls case is not very different. The boundary condition is now 
vg = 0 at z = 0, 2a, with the result that 

vg = U sin (nz/2a) cos (nbt/2a), 

Be = U(pp)* cos (nz/2a) sin (nbt/2a), 

and F is merely the negative of (38), causing secondary flow in the opposite direction. 
Returning to the magnetic-walls case, we observe that the main braking mechanism, 

which yields a steady secondary flow in the face of the rotational radial force field 4, 
where 

F, = (p U2/2rm) cos nz/a, (39) 

will be the induction of azimuthal currents je by radial flow across the vertical field 
B,. This results in a radial braking force - aBg v, because the azimuthal electric field 
is zero in this axisymmetric configuration. (a is the electric conductivity.) The fluid 
being so highly conducting, we shall assume that the secondary flow is slow enough 
for inertia and viscous forces to  be negligible, outside boundary layers at least, and 
examine these assumptions later. The governing equation is therefore 

gradp** = (c - aBi v,) C,, (40) 

e, being the radial unit vector, and p** being p* less the potential of the irrotational 
part of F. Equation (40) is linearized, in keeping with the rest of this paper, for not 
only has the inertia term been omitted but so have the magnetic forces and e.m.f.’s 
due to the induced, perturbation field. From (40) it follows that F, - aBt v, is inde- 
pendent of z. Integrating from z = 0 to 2a reveals that in fact 

F, = aBgvr since V ,  dz = 0, 

in view of flow conservation, and we see that 

T Z  
cos - . PU2 v, = - 

2rmaBg a 

It follows that av,/az = 0, and in fact v, = 0 from the symmetry about the plane z = a. 
Equation (41) obviously fails near the side walls, where v, must fall to zero in boun- 
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dary layers in which inertial and/or viscous effects must occur. In  the case of large 
Alfvkn energy stores running with reasonably large amplitudes it turns out that the 
boundary layers are inertial. If their thickness is of order 6, the inertia term p(v. grad) v 
which has to be added t o  (40) is primarily in the z direction, for vr/S M v,/a (from the 
equation of continuity). Its curl, due primarily to radial gradients, is of order pav:/S3 
or p3aU4/u2rL B$ S3 and must be comparable with the curl of the terms on the right 
of (40 ) ,  i.e. of order pU2/arm. Hence 

(S/aj3 x p2U2/arm a2Bt. (42)  

Ifwe insert the valuesp = 0.93 x lo3,  U = 30, a = 2, rm = 8 , q  (viscosity) = 6.3 x 10-4, 
a = lo7 and B, = 1 (all in S.I. units) referred to in the earlier paper (Shercliff 1976) 
we find that Stakes the relatively small value of 0.016 (i.e. 16 mm). 

In  the boundary layer the curl of any viscous term introduced into (40 )  would be 
of order qv,/S3 (q being viscosity) or v,ravr/S4. As a fraction of the terms that have been 
retained this is of order q / p ,  6. This may be written as rm aqBi/p2SU2, which takes the 
value 0.41 x with the values given above. Viscosity will evidently be negligible 
outside Hartmann layers on the top and bottom walls and the viscous sublayers 
which must exist in the inertial layers. Analysing the nonlinear inertial layers is a 
very difficult problem and is not necessary for present purposes. 

If the primary Alfv6n waves are sufficiently weak, however, the secondary-flow 
boundary layers are viscous rather than inertial and present a linear problem which is 
easily solved, except in the corners, where the boundary layers intersect with the 
Hartmann layers. The condition for viscous rather than inertia forces to dominate 
is that 

in which the boundary-layer thickness S is of order (qa2/aBi)a or a/M4 ( M  being 
the Hartmann number aB,(cr/y)*), a result misleadingly reminiscent of channel flow 
and arrived at by making the curl of the viscous terms (of order qavr/S4) comparable 
with the curl of Fr. In  Jameson's (1964) experiments the left-hand side of (43)  is 
approximately 

The secondary motion consists of a slow cross-flow given by (41), the circulation 
being completed via the boundary layers on the side walls. The flow is radially out- 
wards near the top and bottom and inwards near the middle in the magnetic-walls 
case. 

It remains merely to consider the perturbation of the magnetic field by the current 

p2U2S/uqBg rm < 1 ,  (43)  

and the boundary layers would be viscous. 

Note that (44) does not depend on the dissipative parameters a and q. The minus 
sign corresponds to the magnetic-walls case. The Poisson equation 

V2qi = -pio 

is readily solved subject to the usual conditions q4 = 0 at z = + a  and (a )  #I = 0 or 
(a) aqi/az = 0 at z = 0 ,2a .  We find in case (a)  (conducting walls) that 

S,ua2U2p ~ sin (nnz/2a) { cosh ( n m / 2 a ) )  
1 -  (n odd and integral) ' = Bormn3 n(n2-4) cosh inn 
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and in case ( b )  (magnetic walls) that 

The alteration of the velocity of the primary Alfv6n wave is now due solely to the 
field perturbations because the secondary velocities (outside the boundary layers) are 
horizontal and are in any case extremely small. They are at  most 5 mm/s in the case 
discussed earlier (Shercliff 1976). In  the magnetic-walls case, in the half nearer the 
axis, the steady perturbation of the imposed field causes the primary waves to travel 
faster at  the mid-depth and slower near the top and bottom of the torus. The effect is 
reversed in the half further from the axis. The wave velocity, averaged over the 
depth, is unchanged. In  the conducting-walls case these effects are reversed. 

8. Concluding remarks 
The main aim here has been to throw some initial light on what appears to be an 

interesting and potentially important new problem in MHD. The rough estimates 
of the seriousness of the disruption of the primary Alfv6n waves in large energy stores 
made in the earlier paper have been generally confirmed, but found to be somewhat 
pessimistic, and the true mechanisms have been elucidated. Choosing conducting 
walls at the top and bottom results in much less disruption when the waves are 
progressive. It should be remembered that only a linearized treatment has been given 
and that to analyse properly the performance of a serious engineering installation the 
nonlinear effects would have to be explored, as well as the effects of somewhat less 
idealized boundary conditions, finite conductivity and variable radius (instead of 
using rm). The most interesting question still to be investigated is the mechanism of 
energy transfer from the primary waves to the secondary motions and fields via 
Coriolis effects. 

I am grateful to Mr A. Hulme for arranging the plotting of figures 3 and 6 on a 
digital computer. 

Appendix A. Formulae for computing the conducting-walls case : 
compound formula for Y or Q, 

all positive integers), V = 2 - T and W = 2 + T - 2. 
Here the discriminant factor I is + I forY and - 1 for 0. N is i(2n - 1)  n- (n covering 

Y or Q, is found by summing the series 

( - 1)n-I( cos N X )  
( D  + E),  4N3 

c 
where 

2 l N Z -  1) (if V < 0) 



Secondary flow due to Alfve'n waves 20 1 

(D is the part which is acceptable at  low or high N) and E must take different forms 
at low and high N ,  as follows. 

E(at low N )  = 2[(sinh2 N) eKp (NW coth N) + (cosh2 N) exp (N W tanh N)] (if W > 0) 

+ 21[ - (sinhz N) exp ( - N V coth N) + (cosh2 N )  exp ( - N V tanh N ) ]  
- (1 + 21NZ)e-NV (if V < 0) 
+ eNWf2) (if W < 0) 

+2{(sinh2N) [I(sinhN(2-2)) -sinh NZ]exp(NTcoth N)  

- (cosh2 N) [l(sinh N(2 - 2)) + sinh NZ] exp (NT tanh N)}/sinh 2N 

Either (a) 

or (b) 
E (at high N )  = (2I(NT - I )  + 1) e-NV (if V 2 0) +$1N3V3e-N(V+4)(if V < 0) 

+ (1 - 2NW + 2N2W2 + 3N3 W3(2 + N W )  e-4N) eNw-2) (if W > 0) 

+ ( IQ + P) e-N(V+4) - [I( 2NT - 2 + &e-*9 + P + (P + R) e-4N] eN@+'-2), 

in which 

P = 2( 1 - NT + N2T2), Q = $N3T3 + 2NT - 2, R = %N3T3(2 + NT). 

The high-N formula is a truncated series in powers of e-4N. 
N.B. Where a term is immediately followed by a condition in parentheses, e.g. 

'(if P < 0) ', then it is included only i f  the condition is satisfied. The low-N forms are 
acceptable only for theJirst N ,  namely &T, for which the high-N form is not acceptable, 

Appendix B. Formulae for computing Ab, the change in primary 
step wave velocity 

when T = 2. However we can find a more convenient form, namely 
(a)  Magnetic-walls case (T = 2). The general formula (26) converges very slowly 

Ab(aU2/br,)-l = C( - 1)"-1sinNX (& ----- i i ( c o t h N - I ) )  

=---log X 2 1+tan(fnX)-4x ( -  l )n- l  (sinNX) 
2 7~ l-tan($nX) N e 2 N - l  

The average value (0 < X < 1) is given by 

in which G is Catalan's constant (0.915966 ...). 

(b) Conducting-walls case (0 < T < 2). 

Ab(aUZ/br,)-l = C( - 1)n-1(Q/2N2) sinNX, 
where 

Q = 2(eN(T-4) - e-N')/( 1 - e-4N) + e-2NT (ifT < 1) 

+either(ifn = 1){2[(sinh2N)exp(NWcothN)+(cosh2N)exp(NWtanhN)](ifT > 1) 

- 2[(sinh2 N )  exp (NT coth N)  + (cosh2 N )  exp (NT tanh N ) ]  sinhNT/sinh 2N 

+eZNT(ifT < 1)) 
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or(ifn 2 2){1+Pe-4N-[P+(P+R)e-4N]e2N(T-2)+[1-2NW+2N2W2 

+ QN3W3(2 + N W )  &-v] eZN(T-2) (ifT > l)}, 

in which P = 2( 1 - N T  + N2T2) and R = 3N3T3(2 + N T ) .  The average value 

(0 < X < 1)  is given by Ab,(aU2/br,)-l = C( - 1)m-1&/2N3. 
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